Sirindhorn International Institute of Technology
 Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 371: Problem Set 10 Solution

Semester/Year: 1/2009
Course Title: Digital Circuits
Instructor: Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www.siit.tu.ac.th/prapun/ecs371/

Due date: September 23, 2009 (Wednesday)

Instructions

1. Only ONE of the problems will be graded. Of course, you do not know which problems will be selected; so you should work on all of them.
2. Late submission will not be accepted.
3. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Chapter 9:

1. Why are shift registers considered basic memory devices?

Solution: Shift registers store binary data in a series of flip-flops or other storage elements.

2. What is the storage capacity of a register that can retain two bytes of data?

Solution: 1 byte $=8$ bits; 2 bytes $=16$ bits

3. Name two functions of a shift register.

Solution: Shift data and store data
4. The sequence 1011 is applied to the input of a 4-bit serial shift register that is initially cleared. What is the state of the shift register after three clock pulses?

Solution:

Initially: 0000
After 1st CLK: 1000
After 2nd CLK: 1100

After 3rd CLK: 0110
5. For the data input and clock in Figure 9-48, determine the states of each flip-flop in the shift register of Figure 9-3 and show the Q waveforms. Assume that the register contains all 1 s initially.

6. Solve Problem 5 for the waveforms in Figure 9-49.

Solution:

Chapter 10:

1. Identify the ROM and the RAM in Figure $10-75$.

(a)

(b)

Solution:

(a) ROM: no read/write control
(b) RAM
2. Explain why RAMs and ROMs are both random-access memories.

Solution:

They are random access memories because any address can be accessed at any time. You do not have to go through all the preceding addresses to get to a specific address.
3. Explain the purposes of the address bus and the data bus.

Solution:

Address bus provides for transfer of address code to memory for accessing any memory location in any order for a read or a write operation.

Data bus provides for transfer of data between the microprocessor and memory or input/output devices.
9. Explain the difference between a SRAM and a DRAM.

Solution: The difference between SRAM and DRAM is that data in a SRAM are stored in latches or flip-flops indefinitely as long as power is applied while data in a DRAM are stored in capacitors which require periodic refreshing to retain the stored data.
10. What is the capacity of a DRAM that has twelve address lines?

Solution: The bit capacity of a DRAM with 12 address lines is $2^{2 \times 12}=2^{24}=16,777,216$ bits $=\mathbf{1 6}$ Mbits
12. Determine the truth table for the ROM in Figure 10-77.

FIGURE 10-77

Solution:

Inputs				Outputs			
A_{2}	A_{1}	A_{0}	O_{3}	O_{2}	O_{1}	O_{0}	
0	0	0	0	1	0	0	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	1	0	0	1	
1	0	0	1	1	1	0	
1	0	1	1	0	0	0	
1	1	0	0	0	1	1	
1	1	1	0	1	0	1	

